

ARTICLE

Breast Cancer Prediction Using Machine Learning Models and Digital Pathology: A Systematic Review

Kehinde A. Sotonwa^{1*}, John O. Akintayo¹, Mauton M. Asokere¹, Benjamin S. Aribisala^{1,2}

¹Department of Computer Science, Lagos State University, Lagos, Nigeria

²Department of Medicine, University of Chicago, Chicago, USA

Received 21st February, 2025, Accepted 28th October, 2025

DOI: 10.2478/ast-2025-0004

**Corresponding author*

Kehinde A. Sotonwa, Department of Computer Science, Lagos State University, Lagos, Nigeria. Telephone: +2348067377621;

Email: kehindesotonwa8@gmail.com

Abstract

Background: Breast cancer (BC) remains a paramount global health challenge, driving the oncology community toward more precise and efficient diagnostic methodologies. The advent of digital pathology has been transformative, creating an unprecedented opportunity to apply computational intelligence to the analysis of tissue samples. In this context, a diverse array of artificial intelligence (AI) techniques including traditional machine learning (ML), data-intensive deep learning (DL), and integrated hybrid learning (HL) models are being actively developed for BC prediction. However, the rapid proliferation of research in this domain has led to a fragmented understanding of their comparative strengths and practical implementation barriers. This systematic review was therefore undertaken to synthesize the existing evidence, critically appraising the distinct capabilities and limitations of ML, DL, and HL in the analysis of digital pathology images. **Aim:** This study aims to systematically review and analyze the application of ML, DL and HL techniques in BC prediction using digital pathology, highlighting their comparative strengths, limitations, and impact on diagnostic accuracy. **Method:** Following Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, a systematic review was conducted using Google Scholar to identify relevant studies. Search terms were formulated to retrieve literature on ML and DL models in digital pathology. Articles were screened based on predefined inclusion and exclusion criteria. **Result:** A total of 107 articles were reviewed, including 19 on ML models, 76 on DL models, and 12 articles on HL models. The results highlight the strengths and limitations of each model technique, with DL model being the most widely used approach. **Conclusion:** The assessment of ML, DL, and HL approaches reveals their individual capabilities and shortcomings in predicting BC via digital pathology. DL is the current front-runner, excelling with large image sets, but the slower uptake of ML and HL methods shows room for exploration. This is particularly true for needs like model transparency, combining diverse health records, and ensuring robustness across populations. The conclusions also call for more international partnerships and greater involvement from overlooked areas, especially African nations, to make certain that innovations in computational pathology are universally applicable and address a wide range of medical environments.

Keywords: Breast Cancer, Machine Learning, Deep Learning, Hybrid Learning and Digital Pathology

© Kehinde et al. This work is licensed under the **Creative Commons Attribution-Non-Commercial-NoDerivs License 4.0**

1.0 Introduction

BC is one of the most prevalent cancers globally, affecting millions of women each year (Zhang *et al*, 2024). According to GLOBOCAN, there were approximately 2.3 million new cases and 685,000 deaths due to BC in 2020, about 15% of women and 2% of men making it the leading cause of cancer-related mortality among women (Camarillo-Quesada *et al*, 2021; Sung *et al*, 2021). No single definitive cause has been pinpointed that explains why the disease develops in every individual (Macaulay *et al*, 2021).

Many risk factors for BC have been identified such as genetics, hormones, (a long term hormone), age, family history increase the risk (having first degree relative like mother, sister, or daughter), lifestyle factors influence the risk (like obesity, alcohol consumption, physical inactivity) and radiation exposure (Macaulay *et al*, 2021). Subtype of BC include hormone receptor-positive, HER2+ (human epidermal growth factor receptor 2), and triple negative (TNBC) (Chen *et al*, 2021).

Early detection and accurate diagnosis are critical for improving treatment outcomes, yet traditional diagnostic methods, which often depend on subjective interpretations by pathologists, can lead to significant variability in diagnosis (Bray *et al*, 2024). This variability highlights the urgent need for more standardized and objective diagnostic tools, paving the way for the integration of digital pathology and ML in clinical practice.

Digital pathology involves the digitization of traditional glass slides into whole slide images (WSIs), facilitating the application of advanced image analysis algorithms. DL models, especially convolutional neural networks (CNNs), have demonstrated proficiency in analyzing these complex images. For instance, DL has been used in segmentation and classification of epithelial and mesenchyme regions in BC histopathology WSIs with promising accuracy. This approach employs a multi-scale, multi-level network structure that integrates feature maps from various resolutions, effectively modeling both local cellular and global tissue-level features (Huang *et al*, 2024).

The application of AI in BC diagnosis has been the subject of numerous systematic reviews. A review published in January 2023 shows various AI applications in BC diagnosis, noting that while several studies have demonstrated the value of AI, there remains a lack of systematization, with each study appearing to be conducted uniquely (Uzsahim *et al*, 2022). Another paper from December 2022 emphasized the importance of DL in BC imaging, discussing how CNNs have become state-of-the-art tools for digital pathology image analysis in BC (Guillén-Rondon *et al*, 2019).

The availability of public datasets has significantly propelled research in this domain. A systematic review was impactful for cancer diagnosis in the year 2022 and gave an overview of computational and digital pathology in BC and DL. The paper began by reviewing public datasets related to BC diagnosis, highlighting their critical role in developing and validating ML models (Iqbal *et al*, 2022). New strides in digital pathology technologies have made it possible for the utilization of ML and DL paradigms in the computational analysis and classification of histopathological imagery leading to high potential for improvement of diagnosis accuracy (Gurcan *et al*, 2009). These models' characteristics make it possible to define previously overlooked patterns of BC histology, which will enhance the rates of early detection.

Despite the significant advancements and potential benefits of integrating DL with digital pathology for BC, several challenges and problems still need to be addressed such as variability in pathology slides due to differences in tissue preparation, staining protocols, and slide scanning processes, obtaining consistent and accurate annotations from expert pathologists can be time-consuming and expensive, scarcity of labeled data hinders the training of DL models that require large amounts of labeled data to achieve high performance, DL models are often criticized for their lack of interpretability and explainability, pathology slides can contain artifacts such as bubbles, folds, and staining inconsistencies, and DL models may inadvertently learn and propagate biases present in the training data (Amgad *et al*, 2023; Amgad *et al*, 2024; Liu *et al*, 2023; McCaffrey *et al*, 2024; Nigam *et al*, 2024; Rong *et al*, 2023; Verdicchio *et al*, 2023) etc. To address these issues, this study undertakes a systematic review to examine the which models applied in digital pathology for BC, highlight which models are most predominant, and analyze where they have been deployed. Furthermore, the review underscores the pressing need for greater regional collaboration and inclusivity in research efforts, to ensure that solutions developed are robust, generalizable, and globally applicable.

2.0 Materials and Methods

The systematic review was conducted using PRISMA steps (Keele 2007; Khan *et al*, 2008; Sung *et al*, 2021). Search terms included: BC, DL, ML, digital pathology or combination of BC, ML, DL, and digital pathology. Searches were conducted in Google Scholar database and only relevant articles were identified. In particular, articles were included only if they were carried out on BC as applied to ML, DL and digital pathology, articles that demonstrate

an experiment and show results, article that is either journal or a conference proceeding and article written in English language. Exclusion criteria were based on irrelevant articles i.e. articles that does not have anything to do with search terms, articles with poor study design, articles without experiments i.e. without results and finally articles which are either thesis or dissertation were all excluded. Some of the information were extracted from the articles: title, year, country, articles type, methods, algorithm class, dataset source, dataset types, sample size, features, results, strength and limitation.

3.0 Results

3.1 PRISMA flow chart

As presented in Figure 1, 558 potentially relevant articles were identified using the final search terms. After removing irrelevant studies and perusing titles for uniqueness, the number of studies was reduced to 377. Of these, 181 were screened by title and abstract, and 74 were excluded based on the exclusion criteria. Ultimately, 107 articles met the eligibility criteria and were considered for this study.

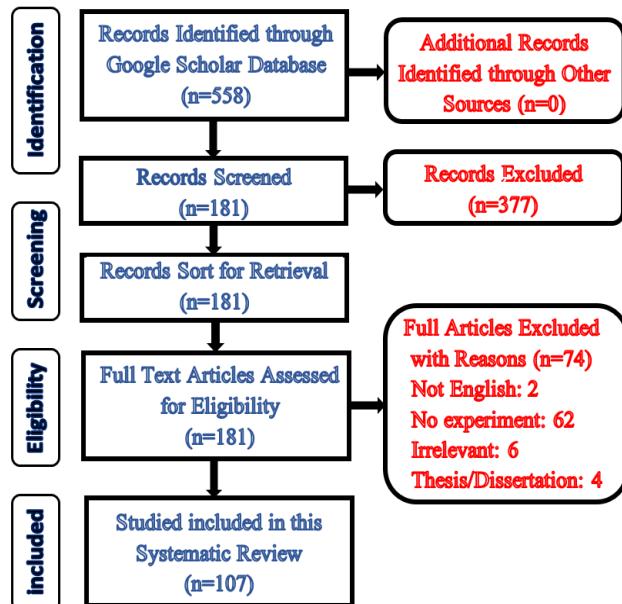


Figure 1: PRISMA flow chart

Table 1: Taxonomy computational models used for predicting BC based on digital pathology

Model Techniques	References	Number of Studies	Distribution (%)
ML	(Aloraidi et al., 2014; Beevi et al., 2016; Chen et al., 2023; Cordeiro et al., 2018; Das et al., 2020; Estévez et al., 2002; Filipczuk et al., 2010; Kost et al., 2016; Naik et al., 2022; Nguyen et al., 2017; Ortega-Ruiz et al., 2020; Polyakova & Krylov, 2022; Pourakpour &	19	17.76%

3.2 Taxonomy of computational models

The taxonomy of computational models in BC digital pathology therefore illustrates not only the evolution from traditional ML to advanced DL methods, but also the rising interest in HL that can bridge the gap between interpretability, accuracy, and clinical applicability. Out of the 107 articles reviewed, the distribution of BC digital pathology models shown that 19 articles focused on ML models, 76 articles on DL models, and 12 articles on HL models. A breakdown of the methods used in these models is depicted in Table 1.

3.3 Evaluating BC prediction models

In BC prediction and diagnosis, ML, DL, and HL approaches have been widely explored, especially with the advancement of digital pathology. Each paradigm offers unique advantages in analyzing clinical and histopathological data, while also presenting notable limitations. Understanding their strengths and weaknesses shown in Table 2 is crucial for identifying suitable models that can improve early detection, diagnosis, and survival prediction in BC patients.

	Ghassemian, 2015; Stanitsas et al., 2020; Tashk et al., 2015; Tutac et al., 2009; Veta et al., 2016; Yoder et al., 2022)		
DL	(Ahmad et al., 2022; Amgad et al., 2019; Balkenhol et al., 2019; Bhavsar et al., 2024; Bidart et al., 2018; Boudjelal et al., 2022; Bozdağ & Talu, 2021; Cai et al., 2019; Cano & Cruz-Roa, 2020; Chatterjee & Krishna, 2019; Chen et al., 2016; Dahake & Shinde, 2023; Dai et al. 2021; Das et al., 2021; de Bel et al., 2022; Djagba & Mbouobda, 2024; Dong et al., 2014; Gella, 2024; Golatkar et al., 2018; Gulye et al., 2024; Guo et al., 2019; Hadush et al., 2020; He et al., 2018; Hradel et al., 2020; Huang et al., 2024; Jafarbiglo et al., 2018; Jamaluddin et al., 2020; Kasturi et al., 2022; Kate & Shukla, 2021; Kovalev et al., 2016; Lakshmanan et al., 2022; Li & Chen, 2021; Liu et al., 2024; Łowicki et al., 2022; McIntire et al., 2018; Meng et al., 2019; Mercan et al., 2019; Mercan et al., 2020; Mirjahanmardi et al., 2021; Mridha et al., 2021; Munien & Viriri, 2021; Ovtcharov et al., 2018; Paramanandam et al., 2016; Pati et al., 2022; Pedraza et al., 2024; Qian, 2022; Qu et al., 2024; Retamero et al., 2024; Saini & Susan, 2022; Salvi et al., 2019; Sebai et al., 2020; Shahidi, 2021; Sheikh et al., 2020; Singh et al., 2024; Sohail et al., 2020; Subramanian et al., 2020; Subramanian et al., 2022; Subramanian et al., 2022; Sui et al., 2021; Tang & Cai, 2024; Teoh et al., 2024; van Dooijeweert et al., 2024; Vani et al., 2022; Veta et al., 2015; Vo & Trang, 2022; Wetstein et al., 2019; Wollmann et al., 2018; Xu et al., 2014; Žejmo et al., 2017; Zhan et al., 2022; Zhou et al., 2019)	76	71.03%
HL	(Kadhim et al., 2023; Karuppasamy et al., 2022; Liang et al., 2019; Malavade et al., 2018; Pei et al., 2019; Raj & Nair, 2023; Scognamiglio et al., 2021; Wa et al., 2017; Wolf et al., 2024; Yang et al., 2023; Zakariapour et al., 2017; Zhu & Lu, 2022)	12	11.21%

Table 2: Strengths and weaknesses of the models (ML, DL, and HL)

Model	Explanation	Examples	Strengths	Weaknesses
ML	It is a subset of AI that enables systems to learn patterns from data and make decisions or predictions without being explicitly programmed.	Decision Tree (DT), Extra Tree (ET), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Logistic Regression (LR), Classification and Regression Tree (CART) etc.	Works well with small to medium-sized datasets. Easier to interpret and explain results. It has faster training time and lower computation cost.	Limited in handling unstructured data. Feature engineering is required. Performance may show diminishing return with complex data
DL	It is a specialized branch of ML that uses ANN with multiple layers to automatically learn hierarchical features from raw data input	Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs).	Excellent at extracting features from complex, high-dimensional data. Performs well with image and text data (e.g., WSI, mammograms). Can model nonlinear and intricate relationships	Requires large labeled datasets. Difficult to interpret ("black box" models). High training time and resource-intensive. Risk of overfitting if not properly regularized.

HL	Combines ML techniques with DL models or integrates two or more AI approaches. Often used to balance feature learning and classification strengths	CNNs +SVM CNN+GNN	Improved prediction accuracy by leveraging strengths of both ML and DL. Adaptable to diverse data types. Enhances model robustness and generalization. Can reduce overfitting by combining complementary models.	Increased model complexity and computational cost. Harder to interpret and debug. Requires expertise in multiple techniques. Model optimization is time-consuming.
----	--	----------------------	---	---

3.4 Analysis of contribution of studies by country

To understand the geographical distribution of research efforts in BC digital pathology, the reviewed articles were analyzed based on their country of origin. The contributions reflect the global spread of scientific engagement, with some nations demonstrating higher research output and leadership in the field. The 107 reviewed articles originated from 28 countries. A single paper was contributed by each of the following: Austria, Belarus, Brazil, Canada, Colombia, Delhi, Egypt, Germany, Hong Kong, Iraq, Japan, Jordan, Korea, Pakistan, Romania, and Ukraine. Two (2) papers each came from Italy, Malaysia, Poland, Spain, and Switzerland. Iran, Turkey and the UK contributed four (4) papers each, while the Netherlands contributed six (6). India and China contributed 13 and 18 papers, respectively, and the USA was the largest contributor with 32 papers.

4.0 Discussion

This systematic review examined the application of ML models in predicting BC using digital pathology. The analysis revealed a significant research focus in developed countries where digital pathology tools are widely adopted. Of the reviewed studies, DL emerged as the dominant approach, with 76 studies, followed by traditional ML and HL. DL's prevalence can be attributed to its ability to effectively handle complex histopathological image data. Tradition ML still remains valuable in low resource settings where computational power and large dataset may be limited. An emerging trend is the use of HL that combine the strengths of both ML and DL to balance performance, complexity and generalizability. However, a significant gap was also observed in the geographical distribution of studies with just only one (1) study originating from Africa, underscoring the need for more inclusive and regionally diverse research.

This study adhered to the PRISMA guidelines, ensuring a rigorous and standardized review process. The classification of ML models based on methodologies provides a clear framework for researchers to identify suitable models for specific

applications. The review highlights the importance of refining data augmentation techniques, and exploring hybridized methods to enhance model stability and generalizability across diverse clinical settings. By addressing these limitations, this study offers valuable insights to guide the development of more effective ML models for BC prediction using digital pathology.

5.0 Conclusion

This study's review of ML, DL, and HL techniques underscores their distinct strengths and limitations in BC prediction using digital pathology. While DL currently dominates due to its effectiveness with large-scale histopathological image datasets, the relatively limited adoption of ML and HL indicates opportunities for further research, particularly in areas where interpretability, integration with clinical data, and model generalizability are critical. Importantly, the findings highlight the need for greater collaborative research efforts and increased contributions from underrepresented regions, especially African countries, to ensure that advancements in computational pathology are globally inclusive and responsive to diverse healthcare contexts.

Acknowledgement

We appreciate Data Science and Medical Image Analysis Training (DATICAN) and National Institute of Health (NIH) for their invaluable support throughout the course of this research. We also appreciate Mr. Mayowa Adeyemi of the Department of Computer Science for helping during data collection. This work was made possible by the DATICAN and the facilities provided by Lagos State University.

References

Ahmad, Wan Siti Halimatul Munirah Wan, Hasan, Md Jahid, Fauzi, Mohammad Faizal Ahmad, Lee, Jenny TH, Khor, See Y, Looi, Lai M, & Abas, Fazly Saleh. (2022). *Nuclei classification in er-ihc stained histopathology images using deep learning models*. Paper presented at the TENCON 2022-2022 IEEE Region 10 Conference (TENCON).

Aloraidi, Nada A, Sirinukunwattana, Korsuk, Khan, Adnan M, & Rajpoot, Nasir M. (2014). *On generating cell exemplars for detection of mitotic cells in breast cancer histopathology images*. Paper presented at the IEEE Engineering in Medicine and Biology Society.

Amgad, Mohamed, Hodge, James, Elsebaie, Maha, Bodelon, Clara, Puvanesarajah, Samantha, Gutman, David, Teras, Lauren. (2023). A population-level computational histologic signature for invasive breast cancer prognosis. *Research Square*.

Amgad, Mohamed, Hodge, James M, Elsebaie, Maha AT, Bodelon, Clara, Puvanesarajah, Samantha, Gutman, David A, Teras, Lauren R. (2024). A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer. *Nature Medicine*, 30(1), 85-97.

Amgad, Mohamed, Sarkar, Anindya, Srinivas, Chukka, Redman, Rachel, Ratra, Simrath, Bechert, Charles J, Cooper, Lee AD. (2019). *Joint region and nucleus segmentation for characterization of tumor infiltrating lymphocytes in breast cancer*. Paper presented at the Medical Imaging 2019: Digital Pathology.

Balkenhol, Maschenka CA, Tellez, David, Vreuls, Willem, Clahsen, Pieter C, Pinckaers, Hans, Ciompi, Francesco, Van Der Laak, Jeroen AWM. (2019). Deep learning assisted mitotic counting for breast cancer. *Laboratory investigation*, 99(11), 1596-1606.

Beevi, K Sabeena, Nair, Madhu S, & Bindu, GR. (2016). *Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier*. Paper presented at the 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

Bhavsar, Ansh, Patel, Vansh, Patel, Yogi, Geddam, Rebakah, Gupta, Rajesh, Tanwar, Sudeep, Shahinzadeh, Hossein. (2024). *Transfer Learning Based Breast Cancer Detection for Telemedicine Systems in Healthcare Environment*. Paper presented at the 2024 8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT).

Bidart, Rene, Gangeh, Mehrdad J, Peikari, Mohammad, Salama, Sherine, Nofech-Mozes, Sharon, Martel, Anne L, & Ghodsi, Ali. (2018). *Localization and classification of cell nuclei in post-neoadjuvant breast cancer surgical specimen using fully convolutional networks*. Paper presented at the Medical Imaging 2018: Digital Pathology.

Boudjelal, Abdelwahhab, Elmoataz, Abderrahim, & Chahir, Youssef. (2022). *Mitosis Detection in Breast Cancer with Deep Learning: A New Approach*. Paper presented at the 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE).

Bozdağ, Zehra, & Talu, Fatih M. (2021). Pyramidal nonlocal network for histopathological image of breast lymph node segmentation. *International Journal of Computational Intelligence Systems*, 14(1), 122-131.

Bray, Freddie, Laversanne, Mathieu, Sung, Hyuna, Ferlay, Jacques, Siegel, Rebecca L, Soerjomataram, Isabelle, & Jemal, Ahmedin. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: a cancer journal for clinicians*, 74(3), 229-263.

Cai, De, Sun, Xianhe, Zhou, Niyun, Han, Xiao, & Yao, Jianhua. (2019). *Efficient mitosis detection in breast cancer histology images by RCNN*. Paper presented at the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

Camarillo-Quesada, Argelia Elisa, Maytorena-Córdova, German, Olguín-Cruces, Víctor Alberto, & Coutiño-Ruiz, Maritza Guadalupe. (2021). Factores asociados con bordes quirúrgicos positivos en pacientes con cáncer de mama tratadas con cirugía conservadora. *Ginecología y obstetricia de México*, 89(9), 696-703.

Cano, Fabian, & Cruz-Roa, Angel. (2020). *An exploratory study of one-shot learning using Siamese convolutional neural network for histopathology image classification in breast cancer from few data examples*. Paper presented at the 15th International Symposium on Medical Information Processing and Analysis.

Chatterjee, Chandra Churh, & Krishna, Gopal. (2019). *A novel method for IDC prediction in breast cancer histopathology images using deep residual neural networks*. Paper presented at the 2019 2nd international conference on intelligent communication and computational techniques (ICCT).

Chen, Cheng-Bang, Wang, Yujie, Fu, Xuanya, & Yang, Hui. (2023). Recurrence Network Analysis of Histopathological Images for the Detection of Invasive Ductal Carcinoma in Breast Cancer. *IEEE/ACM transactions on computational biology and bioinformatics*, 20(5), 3234-3244.

Chen, Richard, Jing, Yating, & Jackson, Hunter. (2016). Identifying metastases in sentinel lymph nodes with deep convolutional neural networks. *arXiv preprint arXiv:1608.01658*.

Chen, Zihao, Wang, Maoli, De Wilde, Rudy Leon, Feng, Ruifa, Su, Mingqiang, Torres-de la Roche, Luz Angela, & Shi, Wenjie. (2021). A machine learning model to predict the triple negative breast cancer immune subtype. *Frontiers in immunology*, 12, 749459.

Cordeiro, Caroline Q, Ioshii, Sergio O, Alves, Jeovane H, & Oliveira, Lucas F. (2018). An automatic patch-based approach for her-2 scoring in immunohistochemical breast cancer images using color features. *arXiv preprint arXiv:1805.05392*.

Dahake, Yash S, & Shinde, Swati V. (2023). *Detection of Nuclei for Breast Cancer Detection Using Histopathology Images*. Paper presented at the 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA).

Dai, Jian, Lei, Shuge, Dong, Licong, Lin, Xiaona, Zhang, Huabin, Sun, Desheng, & Yuan, Kehong (2021). More Practical

AI Solution: Breast Ultrasound Diagnosis Using Multi-AI Model Ensemble System. Computer Science>Computer Vision and Pattern Recognition, arXiv:2101.02639

Das, Asha, Devarapati, Vinod Kumar, & Nair, Madhu S. (2021). NAS-SGAN: a semi-supervised generative adversarial network model for atypia scoring of breast cancer histopathological images. *IEEE Journal of Biomedical and Health Informatics*, 26(5), 2276-2287.

Das, Asha, Nair, Madhu S, & Peter, David S. (2020). Batch mode active learning on the Riemannian manifold for automated scoring of nuclear pleomorphism in breast cancer. *Artificial Intelligence in Medicine*, 103, 101805.

de Bel, Thomas, Litjens, Geert, Ogony, Joshua, Stallings-Mann, Melody, Carter, Jodi M, Hilton, Tracy, Hoskin, Tanya L. (2022). Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning. *NPJ breast cancer*, 8(1), 13.

Djagba, Prudence, & Mbouobda, JK. (2024). Deep Transfer Learning for Breast Cancer Classification. *arXiv preprint arXiv:2409.15313*.

Dong, Fei, Irshad, Humayun, Oh, Eun-Yeong, Lerwill, Melinda F, Brachtel, Elena F, Jones, Nicholas C, Rao, Luigi KF. (2014). Computational pathology to discriminate benign from malignant intraductal proliferations of the breast. *PloS one*, 9(12), e114885.

Estévez, J, Alayón, S, Moreno, L, Aguilar, R, & Sigut, J. (2002). *Cytological breast fine needle aspirate images analysis with a genetic fuzzy finite state machine*. Paper presented at the Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002).

Filipczuk, Paweł, Kowal, Marek, & Marciak, Andrzej. (2010). Feature selection for breast cancer malignancy classification problem. *Journal of Medical Informatics & Technologies*, 15, 193--199.

Gella, Venkat. (2024). High-Performance Classification of Breast Cancer Histopathological Images Using Fine-Tuned Vision Transformers on the BreakHis Dataset. *bioRxiv*, 2024.2008.2017.608410.

Golatkar, Aditya, Anand, Deepak, & Sethi, Amit. (2018). *Classification of breast cancer histology using deep learning*. Paper presented at the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27–29, 2018, Proceedings 15.

Guillén-Rondon, Pablo, Robinson, Melvin, & Ebalunode, Jerry. (2019). *Breast cancer classification: a deep learning approach for digital pathology*. Paper presented at the High Performance Computing: 5th Latin American Conference, CARLA 2018, Bucaramanga, Colombia, September 26–28, 2018, Revised Selected Papers 5.

Gulye, Muharremcan, Dalkilic, Feristah, & Isik, Zerrin. (2024). *Revealing the Effects of Normalization in Breast Cancer Mitotic Cells Detection*. Paper presented at the 2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA).

Guo, Zichao, Liu, Hong, Ni, Haomiao, Wang, Xiangdong, Su, Mingming, Guo, Wei, Qian, Yueliang. (2019). A fast and refined cancer regions segmentation framework in whole-slide breast pathological images. *Scientific reports*, 9(1), 882.

Gurcan, Metin N, Boucheron, Laura E, Can, Ali, Madabhushi, Anant, Rajpoot, Nasir M, & Yener, Bulent. (2009). Histopathological image analysis: A review. *IEEE reviews in biomedical engineering*, 2, 147-171.

Hadush, Simon, Girmay, Yaacob, Sinamo, Abiot, & Hagos, Gebrekirstos. (2020). Breast cancer detection using convolutional neural networks. *arXiv preprint arXiv:2003.07911*.

He, Simin, Ruan, Jun, Long, Yi, Wang, Jianlian, Wu, Chenchen, Ye, Guanlu, Zhang, Yangjeling. (2018). *Combining deep learning with traditional features for classification and segmentation of pathological images of breast cancer*. Paper presented at the 2018 11th International Symposium on Computational Intelligence and Design (ISCID).

Hradel, Dominik, Hudec, Lukas, & Benesova, Wanda. (2020). *Interpretable diagnosis of breast cancer from histological images using Siamese neural networks*. Paper presented at the Twelfth International Conference on Machine Vision (ICMV 2019).

Huang, Shuting, Liu, Zefeng, & Liu, Zhenyu. (2024). *Multimodal Siamese Model for Breast Cancer Survival Prediction*. Paper presented at the 2024 4th International Conference on Neural Networks, Information and Communication (NNICE).

Huang, Tangsen, Yin, Haibing, & Huang, Xingru. (2024). Deep learning and multiscale analysis for epithelial-mesenchyme segmentation and classification in breast cancer histological images. *Signal, Image and Video Processing*, 1-14.

Iqbal, Muhammad Shahid, Ahmad, Waqas, Alizadehsani, Roohallah, Hussain, Sadiq Rehman, Rizwan. (2022). *Breast cancer dataset, classification and detection using deep learning*. Paper presented at the Healthcare.

Jafarbiglo, Sanaz Karimi, Danyali, Habibollah, & Helfroush, Mohammad Sadegh. (2018). *Nuclear atypia grading in histopathological images of breast cancer using convolutional neural networks*. Paper presented at the 2018 4th iranian conference on signal processing and intelligent systems (ICSPIS).

Jamaluddin, Mohammad F, Fauzi, Mohammad Faizal Ahmad, Abas, Fazly Salleh, Lee, Jenny Tung Hiong, Khor, See Y, Teoh, Kean H, & Looi, Lai-Meng. (2020). *Cells detection and segmentation in er-ihc stained breast histopathology images*. Paper presented at the 2020 IEEE Region 10 Conference (TENCON).

Kadhim, Noor Kareem, Al-Khateeb, Belal, & Ahmed, Huda Wadah. (2023). A Proposed Convolutional Neural Network for Breast Cancer Diagnoses. *Advances in Electrical and Electronic Engineering*, 21(1), 9-18.

Karuppasamy, ArunaDevi, Abdesselam, Abdelhamid, Hedjam, Rachid, Zidoum, Hamza, & Al-Bahri, Maiya. (2022). Recent CNN-based techniques for breast cancer histology image classification. *The Journal of Engineering Research [TJER], 19*(1), 41-53.

Kasturi, Surya, Tran, William T, & Shenfield, Alex. (2022). *Accurate nuclei segmentation in breast cancer tumour biopsies*. Paper presented at the 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

Kate, Vandana, & Shukla, Pragya. (2021). Breast cancer image multi-classification using random patch aggregation and depth-wise convolution based deep-net model.

Keele, Staffs. (2007). Guidelines for performing systematic literature reviews in software engineering: Technical report, ver. 2.3 ebse technical report. ebse.

Khan, Siffat Ullah, Niazi, Mahmood, & Ahmad, Rashid. (2008). Systematic Literature Review Protocol for Software Outsourcing Vendors Readiness Model (SOVRM). *School of Computing and Maths, Keele University, UK TR/08, 1*.

Kost, Henning, Homeyer, André, Bult, Peter, Balkenhol, Maschenka CA, van der Laak, Jeroen AWM, & Hahn, Horst K. (2016). *A generic nuclei detection method for histopathological breast images*. Paper presented at the Medical Imaging 2016: Digital Pathology.

Kovalev, Vassili, Kalinovsky, AA, & Liauchuk, Vitali. (2016). Deep learning in big image data: Histology image classification for breast cancer diagnosis.

Lakshmanan, B, Priyadharsini, S, & Selvakumar, B. (2022). Computer assisted mitotic figure detection in histopathology images based on DenseNetPCA framework. *Materials Today: Proceedings, 62*, 4936-4939.

Li, Weizhe, & Chen, Weijie. (2021). *Reproducibility in deep learning algorithms for digital pathology applications: a case study using the CAMELYON16 datasets*. Paper presented at the Medical Imaging 2021: Digital Pathology.

Liang, Yu, Yang, Jinglong, Quan, Xiongwen, & Zhang, Han. (2019). *Metastatic breast cancer recognition in histopathology images using convolutional neural network with attention mechanism*. Paper presented at the 2019 Chinese Automation Congress (CAC).

Liu, Wenbo, Liang, Shengnan, & Qin, Xiwen. (2024). A novel embedded kernel CNN-PCFF algorithm for breast cancer pathological image classification. *Scientific Reports, 14*(1), 23758.

Liu, Yi, Liu, Xiaoyan, Zhang, Hantao, Liu, Junlin, Shan, Chaofan, Guo, Yinglu, Tang, Min. (2023). Artificial intelligence in digital pathology image analysis (Vol. 3, pp. 1007986): Frontiers Media SA.

Łowicki, Bartosz, Hernes, Marcin, & Rot, Artur. (2022). Towards sustainable health-detection of tumor changes in breast histopathological images using deep learning. *Procedia Computer Science, 207*, 1657-1666.

Macaulay, Babafemi Oluopo, Aribisala, Benjamin Segun, Akande, Soji Alabi, Akinnuwo, Boluwaji Ade, & Olabanjo, Olusola Aanu. (2021). Breast cancer risk prediction in African women using random forest classifier. *Cancer Treatment and Research Communications, 28*, 100396.

Malavade, Vinayak N, Melinamath, Bhuvaneshwari C, & Pardeshi, Sujata A. (2018). *Survey of mitosis detection techniques in breast cancer*. Paper presented at the 2018 3rd International Conference on Inventive Computation Technologies (ICICT).

McCaffrey, Christine, Jahangir, Chowdhury, Murphy, Clodagh, Burke, Caoimhhe, Gallagher, William M, & Rahman, Arman. (2024). Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer. *Expert Review of Molecular Diagnostics, 24*(5), 363-377.

McIntire, Patrick J, Irshaid, Lina, Liu, Yifang, Chen, Zhengming, Menken, Faith, Nowak, Eugene, Ginter, Paula S. (2018). Hot spot and whole-tumor enumeration of CD8+ tumor-infiltrating lymphocytes utilizing digital image analysis is prognostic in triple-negative breast cancer. *Clinical Breast Cancer, 18*(6), e451-458.

Meng, Zhu, Zhao, Zhicheng, & Su, Fei. (2019). *Multi-classification of breast cancer histology images by using gravitation loss*. Paper presented at the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Mercan, Caner, Aksoy, Selim, Mercan, Ezgi, Shapiro, Linda G, Weaver, Donald L, & Elmore, Joann G. (2019). *From patch-level to ROI-level deep feature representation for breast histopathology classification*. Paper presented at the Medical Imaging 2019: Digital Pathology.

Mercan, Caner, Aygunes, Bulut, Aksoy, Selim, Mercan, Ezgi, Shapiro, Linda G, Weaver, Donald L, & Elmore, Joann G. (2020). Deep feature representations for variable-sized regions of interest in breast histopathology. *IEEE journal of biomedical and health informatics, 25*(6), 2041-2049.

Mirjahanmardi, Seyed H, Mitha, Samir, Razavi, Salar, Done, Susan, & Khademi, April. (2021). Mitosis detection for breast cancer pathology images using UV-net. *arXiv preprint arXiv:2109.01526*.

Mridha, Krishna, Kumbhani, Smit, Jha, Suman, Joshi, Dhara, Ghosh, Ankush, & Shaw, Rabindra Nath. (2021). *Deep learning algorithms are used to automatically detection invasive ducal carcinoma in whole slide images*. Paper presented at the 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA).

Munien, Chanaleä, & Viriri, Serestina. (2021). Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets. *Computational Intelligence and Neuroscience, 2021*(1), 5580914.

Naik, MV Deepak, Adarsh, S, Vijayakumar, Sreekumar, Nambiar, Abhay P, & Nair, Lekha S. (2022). *Hybrid Feature Set based Mitotic Detection in Breast Histopathology*

Images. Paper presented at the 2022 International Conference on Inventive Computation Technologies (ICICT).

Nguyen, Luong, Tosun, Akif Burak, Fine, Jeffrey L, Taylor, D Lansing, & Chennubhotla, S Chakra. (2017). *Architectural patterns for differential diagnosis of proliferative breast lesions from histopathological images*. Paper presented at the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

Nigam, Shubham Kumar, Sharma, Anurag, Khanna, Danush, Shallum, Noel, Ghosh, Kripabandhu, & Bhattacharya, Arnab. (2024). Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts. *arXiv preprint arXiv:2406.04136*.

Ortega-Ruiz, Mauricio Alberto, Karabağ, Cefa, Garduño, Victor García, & Reyes-Aldasoro, Constantino Carlos. (2020). Morphological estimation of cellularity on neo-adjvant treated breast cancer histological images. *Journal of Imaging*, 6(10), 101.

Ovtcharov, Vlado. Classifying Breast Cancer Stage Using Neural Networks.

Pang, Hao, Lin, Wenjie, Wang, Cong, & Zhao, Chen. (2018). *Using transfer learning to detect breast cancer without network training*. Paper presented at the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS).

Paramanandam, Maqlin, Thamburaj, Robinson, & Mammen, Joy John. (2016). Automated Detection of Mitotic Figures in Breast Cancer Histopathology Images Using Gabor Features and Deep Neural Networks. *ICTACT Journal on Image & Video Processing*, 7(2).

Pati, Pushpak, Jaume, Guillaume, Foncubierta-Rodriguez, Antonio, Feroce, Florinda, Anniciello, Anna Maria, Scognamiglio, Giosue, Riccio, Daniel. (2022). Hierarchical graph representations in digital pathology. *Medical image analysis*, 75, 102264.

Pedraza, Anibal, Gonzalez, Lucia, Deniz, Oscar, & Bueno, Gloria. (2024). Deep Neural Networks for HER2 Grading of Whole Slide Images with Subclasses Levels. *Algorithms*, 17(3), 97.

Pei, Ziang, Cao, Shuangliang, Lu, Lijun, & Chen, Wufan. (2019). Direct cellularity estimation on breast cancer histopathology images using transfer learning. *Computational and mathematical methods in medicine*, 2019(1), 3041250.

Polyakova, Marina V, & Krylov, Victor N. (2022). Data normalization methods to improve the quality of classification in the breast cancer diagnostic system. *Applied Aspects of Information Technology*, 5(1), 55-63.

Pourakpour, Fattaneh, & Ghassemian, Hassan. (2015). *Automated mitosis detection based on combination of effective textural and morphological features from breast cancer histology slide images*. Paper presented at the 2015 22nd Iranian Conference on Biomedical Engineering (ICBME).

Qian, Tongyuan. (2022). *Comparison of Cutting Edge Convolutional Neural Network for Breast Cancer Histopathology Image Diagnosis*. Paper presented at the 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022).

Qu, Linhao, Zhang, Chengsheng, Li, Guihui, Zheng, Haiyong, Peng, Chen, & He, Wei. (2024). *Advancing H&E-to-IHC Stain Translation in Breast Cancer: A Multi-Magnification and Attention-Based Approach*. Paper presented at the 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM).

Raj, Anakha M, & Nair, Lekha S. (2023). *Breast Cancer Histopathology Image Classification Using Ensemble Feature Set*. Paper presented at the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT).

Retamero, Juan Antonio, Gulturk, Emre, Bozkurt, Alican, Liu, Sandy, Gorgan, Maria, Moral, Luis, ... Sue, Jill. (2024). Artificial Intelligence Helps Pathologists Increase Diagnostic Accuracy and Efficiency in the Detection of Breast Cancer Lymph Node Metastases. *The American Journal of Surgical Pathology*, 48(7), 846-854.

Rong, Ruichen, Wang, Shidan, Zhang, Xinyi, Wen, Zhuoyu, Cheng, Xian, Jia, Liwei, ... Xiao, Guanghua. (2023). Enhanced Pathology Image Quality with Restore-Generative Adversarial Network. *The American Journal of Pathology*, 193(4), 404-416.

Saini, Manisha, & Susan, Seba. (2022). Vggin-net: Deep transfer network for imbalanced breast cancer dataset. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 20(1), 752-762.

Salvi, Massimo, Molinari, Filippo, Dogliani, Natalia, & Bosco, Martino. (2019). Automatic discrimination of neoplastic epithelium and stromal response in breast carcinoma. *Computers in Biology and Medicine*, 110, 8-14.

Scognamiglio, Guillaume Jaume, De Pietro, Giuseppe, Di Bonito, Maurizio, Foncubierta, Antonio, Botti, Gerardo, Gabrani, Maria, Frucci, Maria. (2021). BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images. *arXiv preprint arXiv:2111.04740*.

Sebai, Meriem, Wang, Tianjiang, & Al-Fadhli, Saad Ali. (2020). PartMitosis: a partially supervised deep learning framework for mitosis detection in breast cancer histopathology images. *IEEE Access*, 8, 45133-45147.

Shahidi, Faezehsadat. (2021). Breast cancer histopathology image super-resolution using wide-attention gan with improved wasserstein gradient penalty and perceptual loss. *IEEE Access*, 9, 32795-32809.

Sheikh, Taimoor Shakeel, Lee, Yonghee, & Cho, Migyung. (2020). Histopathological classification of breast cancer images using a multi-scale input and multi-feature network. *Cancers*, 12(8), 2031.

Singh, Oishi, Adnan, Mehedi Hassan, Tabassum, Taohid, & Rahman, Anisur (2024). A VGG16-Based Deep Learning System for Accurate Detection of Breast Cancer in Histopathology Images. *Journal of Advanced Research in Artificial Intelligence & It's Applications*, 1(3), 57-64.

Sohail, Anabia, Mukhtar, Muhammad Ahsan, Khan, Asifullah, Zafar, Muhammad Mohsin, Zameer, Aneela, & Khan, Saranjam. (2020). Deep object detection based mitosis analysis in breast cancer histopathological images. *arXiv preprint arXiv:2003.08803*.

Stanitsas, Panagiotis, Cherian, Anoop, Morellas, Vassilios, Tejpaul, Resha, Papanikolopoulos, Nikolaos, & Truskovsky, Alexander. (2020). Image descriptors for weakly annotated histopathological breast cancer data. *Frontiers in digital health*, 2, 572671.

Subramanian, Rajasekaran, Guptha, Swathi, Rubi, R Devika, Kasavaraju, A Krishna, & Jain, Samayk. (2020). Automatic classification of sentinel lymph node (SLN) metastases in breast carcinoma whole slide image (WSI) through densenet deep learning network. *IP Journal of Diagnostic Pathology and Oncology*, 5(2), 144-150.

Subramanian, Rajasekaran, Rubi, R Devika, Tapadia, Rohit, Karthik, Katakan, Ahmed, Mohammad Faseeh, & Manudeep, Allam. (2022). Web based Mitosis Detection on Breast Cancer Whole Slide Images using Faster R-CNN and YOLOv5. *International Journal of Advanced Computer Science and Applications*, 13(12).

Subramanian, Rajasekaran, Rubi, R Devika, Tapadia, Rohit, & Singh, Rochan. (2022). KMIT-Pathology: Digital Pathology AI Platform for Cancer Biomarkers Identification on Whole Slide Images. *International Journal of Advanced Computer Science and Applications*, 13(11).

Sui, Dong, Liu, Weifeng, Chen, Jing, Zhao, Chunxiao, Ma, Xiaoxuan, Guo, Maozu, & Tian, Zhaofeng. (2021). A pyramid architecture-based deep learning framework for breast cancer detection. *BioMed Research International*, 2021(1), 2567202.

Sung, Hyuna, Ferlay, Jacques, Siegel, Rebecca L, Laversanne, Mathieu, Soerjomataram, Isabelle, Jemal, Ahmedin, & Bray, Freddie. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: a cancer journal for clinicians*, 71(3), 209-249.

Tang, Qiling, & Cai, Yu. (2024). Deep radial basis function networks with subcategorization for mitosis detection in breast histopathology images. *Medical Image Analysis*, 95, 103204.

Tashk, Ashkan, Helfroush, Mohammad Sadegh, Danyali, Habibollah, & Akbarzadeh-Jahromi, Mojgan. (2015). Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features. *Applied Mathematical Modelling*, 39(20), 6165-6182.

Teoh, Chai Ling, Tan, Xiao Jian, Ab Rahman, Khairul Shakir, Bakrin, Ikmal Hisyam, Goh, Kam Meng, Siet, Joseph

Jiun Wen, & Wan Muhamad, Wan Zuki Azman. (2024). A Quantitative Measurement Method for Nuclear-Pleomorphism Scoring in Breast Cancer. *Diagnostics*, 14(18), 2045.

Tutac, Adina E, Racoceanu, Daniel, Leow, Wee-Keng, Müller, Henning, Putti, Thomas, & Cretu, Vladimir. (2009). *Toward translational incremental similarity-based reasoning in breast cancer grading*. Paper presented at the Medical Imaging 2009: Computer-Aided Diagnosis.

Uzun Ozsahin, Dilber, Ikechukwu Emegano, Declan, Uzun, Berna, & Ozsahin, Ilker. (2022). The systematic review of artificial intelligence applications in breast cancer diagnosis. *Diagnostics*, 13(1), 45.

van Dooijeweert, C, Flach, RN, Ter Hoeve, ND, Vreuls, CP H, Goldschmeding, R, Freund, JE, Frederix, GWJ. (2024). Clinical implementation of artificial-intelligence-assisted detection of breast cancer metastases in sentinel lymph nodes: the CONFIDENT-B single-center, non-randomized clinical trial. *Nature Cancer*, 5(8), 1195-1205.

Vani, K Suvarna, Hung, Bui Thanh, Chakrabarti, Prasun, Chakrabarti, Tulika, & Elngar, Ahmed A. (2022). Detection and Classification of Invasive Ductal Carcinoma using Artificial Intelligence.

Verdicchio, Mario, Brancato, Valentina, Cavaliere, Carlo, Isgrò, Francesco, Salvatore, Marco, & Aiello, Marco. (2023). A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images. *Heliyon*, 9(3).

Veta, Mitko, Van Diest, Paul J, Jiwa, Mehdi, Al-Janabi, Shaimaa, & Pluim, Josien PW. (2016). Mitosis counting in breast cancer: Object-level interobserver agreement and comparison to an automatic method. *PLoS One*, 11(8), e0161286.

Veta, Mitko, Van Diest, Paul J, Willems, Stefan M, Wang, Haibo, Madabhushi, Anant, Cruz-Roa, Angel, Dahl, Anders B. (2015). Assessment of algorithms for mitosis detection in breast cancer histopathology images. *Medical image analysis*, 20(1), 237-248.

Vo, Phat Tan, & Trang, Hoang. (2022). An efficient hardware implementation of Convolutional Neural Network in detect Breast Cancer Histopathology Image. *REV Journal on Electronics and Communications*, 11(3-4).

Wan, Tao, Cao, Jiajia, Chen, Jianhui, & Qin, Zengchang. (2017). Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. *Neurocomputing*, 229, 34-44.

Wetstein, Suzanne C, Onken, Allison M, Baker, Gabrielle M, Pyle, Michael E, Pluim, Josien PW, Tamimi, Rulla M, Veta, Mitko. (2019). *Detection of acini in histopathology slides: towards automated prediction of breast cancer risk*. Paper presented at the Medical Imaging 2019: Digital Pathology.

Wolf, Andrew MD, Oeffinger, Kevin C, Shih, Tina Ya-Chen, Walter, Louise C, Church, Timothy R, Fontham, Elizabeth TH, Perkins, Rebecca B. (2024). Screening for lung cancer: 2023 guideline update from the

American Cancer Society. *CA: A Cancer Journal for Clinicians*, 74(1), 50-81.

Wollmann, Thomas, Eijkman, CS, & Rohr, Karl. (2018). *Adversarial domain adaptation to improve automatic breast cancer grading in lymph nodes*. Paper presented at the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

Xu, Jun, Xiang, Lei, Hang, Renlong, & Wu, Jianzhong. (2014). *Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology*. Paper presented at the 2014 IEEE 11th international symposium on biomedical imaging (ISBI).

Yang, Yongquan, Chen, Jie, Wei, Yani, Allobaidi, Mohammad, & Bu, Hong. (2023). Experts' cognition-driven safe noisy labels learning for precise segmentation of residual tumor in breast cancer. *arXiv preprint arXiv:2304.07295*.

Yoder, Alyson, Inge, Landon J, Chen, Chen-Chun, Marati, Vijay R, Nguyen, Trung Kien, Zuiderveld, Karel, . . . Venugopal, Raghavan. (2022). Computer-aided scoring of erb-b2 receptor tyrosine kinase 2 (HER2) gene amplification status in breast cancer. *Journal of Pathology Informatics*, 13, 100116.

Zakariapour, Sooshiant, Jazayeriy, Hamid, & Ezoji, Mehdi. (2017). Mitosis detection in breast cancer histological images based on texture features using adaboost. *J. Inf. Syst. Telecommun*, 5(2), 88-96.

Žejmo, Michał, Kowal, Marek, Korbicz, Józef, & Monczak, Roman. (2017). *Classification of breast cancer cytological specimen using convolutional neural network*. Paper presented at the Journal of Physics: Conference Series.

Zhan, Yangen, Bian, Hao, Chen, Yang, Li, Xiu, & Zhang, Yongbing. (2022). *Breast tumor image classification in bright challenge via multiple instance learning and deep transformers*. Paper presented at the 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC).

Zhang, Song, Jin, Zhihui, Bao, Lingling, & Shu, Peng. (2024). The global burden of breast cancer in women from 1990 to 2030: assessment and projection based on the global burden of disease study 2019. *Frontiers in Oncology*, 14.

Zhou, Jingfan, Ruan, Jun, Wu, Chenchen, Ye, Guanglu, Zhu, Zhikui, Yue, Junqiu, & Zhang, Yanggeling. (2019). *Superpixel segmentation of breast cancer pathology images based on features extracted from the autoencoder*. Paper presented at the 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN).

Zhu, Xuedong, & Lu, Xi. (2022). *Automatic Nuclear Atypia Scoring of Breast Cancer Pathological Images Based on Deep Residual Network and Meta-decision Tree*. Paper presented at the 2022 7th International Conference on Control and Robotics Engineering (ICCRE).