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Abstract

Background: Breast cancer (BC) remains a paramount global health challenge, driving the oncology community toward more precise and
efficient diagnostic methodologies. The advent of digital pathology has been transformative, creating an unprecedented opportunity to
apply computational intelligence to the analysis of tissue samples. In this context, a diverse array of artificial intelligence (Al) techniques
including traditional machine learning (ML), data-intensive deep learning (DL), and integrated hybrid learning (HL) models are being
actively developed for BC prediction. However, the rapid proliferation of research in this domain has led to a fragmented understanding of
their comparative strengths and practical implementation barriers. This systematic review was therefore undertaken to synthesize the
existing evidence, critically appraising the distinct capabilities and limitations of ML, DL, and HL in the analysis of digital pathology images.
Aim: This study aims to systematically review and analyze the application of ML, DL and HL techniques in BC prediction using digital
pathology, highlighting their comparative strengths, limitations, and impact on diagnostic accuracy. Method: Following Preferred
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, a systematic review was conducted using Google Scholar
to identify relevant studies. Search terms were formulated to retrieve literature on ML and DL models in digital pathology. Articles were
screened based on predefined inclusion and exclusion criteria. Result: A total of 107 articles were reviewed, including 19 on ML models,
76 on DL models, and 12 articles on HL models. The results highlight the strengths and limitations of each model technique, with DL model
being the most widely used approach. Conclusion: The assessment of ML, DL, and HL approaches reveals their individual capabilities and
shortcomings in predicting BC via digital pathology. DL is the current front-runner, excelling with large image sets, but the slower uptake
of ML and HL methods shows room for exploration. This is particularly true for needs like model transparency, combining diverse health
records, and ensuring robustness across populations. The conclusions also call for more international partnerships and greater
involvement from overlooked areas, especially African nations, to make certain that innovations in computational pathology are
universally applicable and address a wide range of medical environments.
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1.0 Introduction

BCis one of the most prevalent cancers globally, affecting millions of
women each year (Zhang et al, 2024). According to GLOBOCAN,
there were approximately 2.3 million new cases and 685,000 deaths
due to BC in 2020, about 15% of women and 2% of men making it
the leading cause of cancer-related mortality among women
(Camarillo-Quesada et al, 2021; Sung et al, 2021). No single
definitive cause has been pinpointed that explains why the disease
develops in every individual (Macaulay et al, 2021).

Many risk factors for BC have been identified such as genetics,
hormones, (a long term hormone), age, family history increase the
risk (having first degree relative like mother, sister, or daughter),
lifestyle factors influence the risk (like obesity, alcohol consumption,
physical inactivity) and radiation exposure (Macaulay et al, 2021).
Subtype of BC include hormone receptor-positive, HER2+ (human
epidermal growth factor receptor 2), and triple negative (TNBC)
(Chen etal, 2021).

Early detection and accurate diagnosis are critical for improving
treatment outcomes, yet traditional diagnostic methods, which often
depend on subjective interpretations by pathologists, can lead to
significant variability in diagnosis (Bray et al,, 2024). This variability
highlights the urgent need for more standardized and objective
diagnostic tools, paving the way for the integration of digital
pathology and ML in clinical practice.

Digital pathology involves the digitization of traditional glass slides
into whole slide images (WSIs), facilitating the application of
advanced image analysis algorithms. DL models, especially
convolutional neural networks (CNNs), have demonstrated
proficiency in analyzing these complex images. For instance, DL has
been used in segmentation and classification of epithelial and
mesenchyme regions in BC histopathology WSIs with promising
accuracy. This approach employs a multi-scale, multi-level network
structure that integrates feature maps from various resolutions,
effectively modeling both local cellular and global tissue-level
features (Huang et al, 2024).

The application of Al in BC diagnosis has been the subject of
numerous systematic reviews. A review published in January 2023
shows various Al applications in BC diagnosis, noting that while
several studies have demonstrated the value of Al, there remains a
lack of systematization, with each study appearing to be conducted
uniquely (Uzsahim et al,, 2022). Another paper from December 2022
emphasized the importance of DL in BC imaging, discussing how
CNNs have become state-of-the-art tools for digital pathology image
analysis in BC (Guillén-Rondon et al, 2019).

The availability of public datasets has significantly propelled
research in this domain. A systematic review was impactful for
cancer diagnosis in the year 2022 and gave an overview of
computational and digital pathology in BC and DL. The paper began
by reviewing public datasets related to BC diagnosis, highlighting
their critical role in developing and validating ML models (Igbal et
al, 2022). New strides in digital pathology technologies have made
it possible for the utilization of ML and DL paradigms in the
computational analysis and classification of histopathological
imagery leading to high potential for improvement of diagnosis
accuracy (Gurcan et al, 2009). These models' characteristics make it
possible to define previously overlooked patterns of BC histology,
which will enhance the rates of early detection.

Despite the significant advancements and potential benefits of
integrating DL with digital pathology for BC, several challenges and
problems still need to be addressed such as variability in pathology
slides due to differences in tissue preparation, staining protocols,
and slide scanning processes, obtaining consistent and accurate
annotations from expert pathologists can be time-consuming and
expensive, scarcity of labeled data hinders the training of DL models
that require large amounts of labeled data to achieve high
performance, DL models are often criticized for their lack of
interpretability and explainability, pathology slides can contain
artifacts such as bubbles, folds, and staining inconsistencies, and DL
models may inadvertently learn and propagate biases present in the
training data (Amgad et al, 2023; Amgad et al, 2024; Liu et al, 2023;
McCaffrey et al, 2024; Nigam et al, 2024; Rong et al, 2023;
Verdicchio et al, 2023) etc. To address these issues, this study
undertakes a systematic review to examine the which models
applied in digital pathology for BC, highlight which models are most
predominant, and analyze where they have been deployed.
Furthermore, the review underscores the pressing need for greater
regional collaboration and inclusivity in research efforts, to ensure
that solutions developed are robust, generalizable, and globally

applicable.

2.0 Materials and Methods

The systematic review was conducted using PRISMA steps (Keele
2007; Khan et al, 2008; Sung et al, 2021). Search terms included:
BC, DL, ML, digital pathology or combination of BC, ML, DL, and
digital pathology. Searches were conducted in Google Scholar
database and only relevant articles were identified. In particular,
articles were included only if they were carried out on BC as applied

to ML, DL and digital pathology, articles that demonstrate
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Systematic Review

an experiment and show results, article that is either journal or a
conference proceeding and article written in English language.
Exclusion criteria were based on irrelevant articles i.e. articles that
does not have anything to do with search terms, articles with poor
study design, articles without experiments i.e. without results and
finally articles which are either thesis or dissertation were all
excluded. Some of the information were extracted from the articles:
title, year, country, articles type, methods, algorithm class, dataset

source, dataset types, sample size, features, results, strength and

limitation.
3.0 Results
3.1 PRISMA flow chart

As presented in Figure 1, 558 potentially relevant articles were
identified using the final search terms. After removing irrelevant
studies and perusing titles for uniqueness, the number of studies
was reduced to 377. Of these, 181 were screened by title and
abstract, and 74 were excluded based on the exclusion criteria.
Ultimately, 107 articles met the eligibility criteria and were

considered for this study.
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Figure 1: PRISMA flow chart

3.2 Taxonomy of computational models

The taxonomy of computational models in BC digital pathology
therefore illustrates not only the evolution from traditional ML to
advanced DL methods, but also the rising interest in HL that can
bridge the gap between interpretability, accuracy, and clinical
applicability. Out of the 107 articles reviewed, the distribution of BC
digital pathology models shown that 19 articles focused on ML
models, 76 articles on DL models, and 12 articles on HL models. A
breakdown of the methods used in these models is depicted in Table

1.

3.3 Evaluating BC prediction models

In BC prediction and diagnosis, ML, DL, and HL approaches have
been widely explored, especially with the advancement of digital
pathology. Each paradigm offers unique advantages in analyzing
clinical and histopathological data, while also presenting notable
limitations. Understanding their strengths and weaknesses shown
in Table 2 is crucial for identifying suitable models that can improve

early detection, diagnosis, and survival prediction in BC patients.

Table 1: Taxonomy computational models used for predicting BC based on digital pathology

Model References Number of Distribution
Techniques Studies (%)
ML (Aloraidi et al, 2014; Beevi et al, 2016; Chen et al, 2023; Cordeiro et al, 2018; Das et 19 17.76%

al, 2020; Estévez et al, 2002; Filipczuk et al, 2010; Kost et al, 2016; Naik et al, 2022;
Nguyen et al, 2017; Ortega-Ruiz et al, 2020; Polyakova & Krylov, 2022; Pourakpour &
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Ghassemian, 2015; Stanitsas et al, 2020; Tashk et al, 2015; Tutac et al, 2009; Veta et
al, 2016; Yoder et al, 2022)

DL (Ahmad et al, 2022; Amgad et al, 2019; Balkenhol et al, 2019; Bhavsar et al, 2024; 76 71.03%
Bidart et al, 2018; Boudjelal et al,2022; Bozdag & Talu, 2021; Cai et al, 2019; Cano &
Cruz-Roa, 2020; Chatterjee & Krishna, 2019; Chen et al, 2016; Dahake & Shinde, 2023;
Dai et al 2021; Das et al, 2021; de Bel et al, 2022; Djagba & Mbouobda, 2024; Dong et
al, 2014; Gella, 2024; Golatkar et al, 2018; Gulye et al, 2024; Guo et al, 2019; Hadush
etal,2020; He etal, 2018; Hradel et al, 2020; Huang et al, 2024; Jafarbiglo et al, 2018;
Jamaluddin et al, 2020; Kasturi et al, 2022; Kate & Shukla, 2021; Kovalev et al, 2016;
Lakshmanan et al, 2022; Li & Chen, 2021; Liu et al, 2024; Lowicki et al, 2022; McIntire
et al, 2018; Meng et al, 2019; Mercan et al, 2019; Mercan et al, 2020; Mirjahanmardi
et al, 2021; Mridha et al, 2021; Munien & Viriri, 2021; Ovtcharov et al, 2018;
Paramanandam et al, 2016; Pati et al, 2022; Pedraza et al, 2024; Qian, 2022; Qu et al,
2024; Retamero et al, 2024; Saini & Susan, 2022; Salvi et al, 2019; Sebai et al, 2020;
Shahidi, 2021; Sheikh et al, 2020; Singh et al, 2024; Sohail et al, 2020; Subramanian et
al, 2020; Subramanian et al, 2022; Subramanian et al, 2022; Sui et al, 2021; Tang &

Cai, 2024; Teoh et al, 2024; van Dooijeweert et al, 2024; Vani et al, 2022; Veta et al,
2015; Vo & Trang, 2022; Wetstein et al, 2019; Wollmann et al, 2018; Xu et al, 2014;
Zejmo et al, 2017; Zhan et al, 2022; Zhou et al, 2019)

HL (Kadhim et al, 2023; Karuppasamy et al, 2022; Liang etal, 2019; Malavade et al, 2018; 12 11.21%
Pei et al, 2019; Raj & Nair, 2023; Scognamiglio et al, 2021; Wa et al, 2017; Wolf et al,
2024; Yang et al, 2023; Zakariapour et al, 2017; Zhu & Lu, 2022)

Table 2: Strengths and weaknesses of the models (ML, DL, and HL)

Model Explanation Examples Strengths Weaknesses
ML It is a subset of Al that | Decision Tree (DT), Extra | Works well with small to | Limited in handling
enables systems to learn | Tree (ET), Support Vector | medium-sized datasets. unstructured data.

patterns from data and | Machine (SVM), K-Nearest | Easier to interpret and explain | Feature engineering is

make decisions or | Neighbor (KNN), Random | results. required.

predictions without being | Forest (RF), Logistic | It has faster training time and | Performance may  show

explicitly programmed. Regression (LR), | lower computation cost. diminishing return  with
Classification and Regression complex data

Tree (CART) etc.

DL It is a specialized branch of | Convolutional Neural | Excellent at extracting features | Requires large labeled

ML that uses ANN with | Networks (CNNs), Recurrent | from complex, high-dimensional | datasets.

multiple layers to | Neural Networks (RNNs). data. Difficult to interpret ("black
automatically learn Performs well with image and | box" models).

hierarchical features from text data (e.g., WSI, | High training time and
raw data input mammograms). resource-intensive.

Can model nonlinear and | Risk of overfitting if not

intricate relationships properly regularized.
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HL Combines ML techniques | CNNs +SVM
with DL  models or | CNN+GNN
integrates two or more Al
approaches.

Often used to balance
feature learning and

classification strengths

Improved prediction accuracy | Increased model complexity
by leveraging strengths of both | and computational cost.

ML and DL. Harder to interpret and
Adaptable to diverse data types. | debug.

Enhances model robustness and | Requires expertise in multiple
generalization. techniques.

Can reduce overfitting by | Model optimization is time-
combining complementary | consuming.

models.

3.4 Analysis of contribution of studies by country

To understand the geographical distribution of research efforts
in BC digital pathology, the reviewed articles were analyzed
based on their country of origin. The contributions reflect the
global spread of scientific engagement, with some nations
demonstrating higher research output and leadership in the
field. The 107 reviewed articles originated from 28 countries. A
single paper was contributed by each of the following: Austria,
Belarus, Brazil, Canada, Colombia, Delhi, Egypt, Germany, Hong
Kong, Iraq, Japan, Jordan, Korea, Pakistan, Romania, and
Ukraine. Two (2) papers each came from Italy, Malaysia, Poland,
Spain, and Switzerland. Iran, Turkey and the UK contributed
four (4) papers each, while the Netherlands contributed six (6).
India and China contributed 13 and 18 papers, respectively, and

the USA was the largest contributor with 32 papers.

4.0 Discussion

This systematic review examined the application of ML models
in predicting BC using digital pathology. The analysis revealed a
significant research focus in developed countries where digital
pathology tools are widely adopted. Of the reviewed studies, DL
emerged as the dominant approach, with 76 studies, followed
by traditional ML and HL. DL's prevalence can be attributed to
its ability to effectively handle complex histopathological image
data, Tradition ML still remains valuable in low resource
settings where computational power and large dataset may be
limited. An emerging trend is the use of HL that combine the
strengths of both ML and DL to balance performance,
complexity and generalizability. However, a significant gap was
also observed in the geographical distribution of studies with
just only one (1) study originating

from Africa, underscoring the need for more inclusive and
regionally diverse research.

This study adhered to the PRISMA guidelines, ensuring a
rigorous and standardized review process. The classification of
ML models based on methodologies provides a clear framework

for researchers to identify suitable models for specific

applications. The review highlights the importance of refining
data augmentation techniques, and exploring hybridized
methods to enhance model stability and generalizability across
diverse clinical settings. By addressing these limitations, this
study offers valuable insights to guide the development of more

effective ML models for BC prediction using digital pathology.

5.0 Conclusion

This study’s review of ML, DL, and HL techniques underscores
their distinct strengths and limitations in BC prediction using
digital pathology. While DL currently dominates due to its
effectiveness with large-scale histopathological image datasets,
the relatively limited adoption of ML and HL indicates
opportunities for further research, particularly in areas where
interpretability, integration with clinical data, and model
generalizability are critical. Importantly, the findings highlight
the need for greater collaborative research efforts and
increased contributions from underrepresented regions,
especially African countries, to ensure that advancements in
computational pathology are globally inclusive and responsive

to diverse healthcare contexts.
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