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Abstract 

Background: Breast cancer (BC) remains a paramount global health challenge, driving the oncology community toward more precise and 
efficient diagnostic methodologies. The advent of digital pathology has been transformative, creating an unprecedented opportunity to 
apply computational intelligence to the analysis of tissue samples. In this context, a diverse array of artificial intelligence (AI) techniques 
including traditional machine learning (ML), data-intensive deep learning (DL), and integrated hybrid learning (HL) models are being 
actively developed for BC prediction. However, the rapid proliferation of research in this domain has led to a fragmented understanding of 
their comparative strengths and practical implementation barriers. This systematic review was therefore undertaken to synthesize the 
existing evidence, critically appraising the distinct capabilities and limitations of ML, DL, and HL in the analysis of digital pathology images. 
Aim: This study aims to systematically review and analyze the application of ML, DL and HL techniques in BC prediction using digital 
pathology, highlighting their comparative strengths, limitations, and impact on diagnostic accuracy. Method: Following Preferred 
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, a systematic review was conducted using Google Scholar 
to identify relevant studies. Search terms were formulated to retrieve literature on ML and DL models in digital pathology. Articles were 
screened based on predefined inclusion and exclusion criteria. Result: A total of 107 articles were reviewed, including 19 on ML models, 
76 on DL models, and 12 articles on HL models. The results highlight the strengths and limitations of each model technique, with DL model 
being the most widely used approach. Conclusion: The assessment of ML, DL, and HL approaches reveals their individual capabilities and 
shortcomings in predicting BC via digital pathology. DL is the current front-runner, excelling with large image sets, but the slower uptake 
of ML and HL methods shows room for exploration. This is particularly true for needs like model transparency, combining diverse health 
records, and ensuring robustness across populations. The conclusions also call for more international partnerships and greater 
involvement from overlooked areas, especially African nations, to make certain that innovations in computational pathology are 
universally applicable and address a wide range of medical environments. 
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1.0 Introduction 

BC is one of the most prevalent cancers globally, affecting millions of 

women each year (Zhang et al., 2024). According to GLOBOCAN, 

there were approximately 2.3 million new cases and 685,000 deaths 

due to BC in 2020, about 15% of women and 2% of men making it 

the leading cause of cancer-related mortality among women 

(Camarillo-Quesada et al., 2021; Sung et al., 2021). No single 

definitive cause has been pinpointed that explains why the disease 

develops in every individual (Macaulay et al., 2021). 

Many risk factors for BC have been identified such as genetics, 

hormones, (a long term hormone), age, family history increase the 

risk (having first degree relative like mother, sister, or daughter), 

lifestyle factors influence the risk (like obesity, alcohol consumption, 

physical inactivity) and radiation exposure (Macaulay et al., 2021). 

Subtype of BC include hormone receptor–positive, HER2+ (human 

epidermal growth factor receptor 2), and triple negative (TNBC) 

(Chen et al., 2021). 

Early detection and accurate diagnosis are critical for improving 

treatment outcomes, yet traditional diagnostic methods, which often 

depend on subjective interpretations by pathologists, can lead to 

significant variability in diagnosis (Bray et al., 2024). This variability 

highlights the urgent need for more standardized and objective 

diagnostic tools, paving the way for the integration of digital 

pathology and ML in clinical practice. 

Digital pathology involves the digitization of traditional glass slides 

into whole slide images (WSIs), facilitating the application of 

advanced image analysis algorithms. DL models, especially 

convolutional neural networks (CNNs), have demonstrated 

proficiency in analyzing these complex images. For instance, DL has 

been used in segmentation and classification of epithelial and 

mesenchyme regions in BC histopathology WSIs with promising 

accuracy. This approach employs a multi-scale, multi-level network 

structure that integrates feature maps from various resolutions, 

effectively modeling both local cellular and global tissue-level 

features (Huang et al., 2024).  

The application of AI in BC diagnosis has been the subject of 

numerous systematic reviews. A review published in January 2023 

shows various AI applications in BC diagnosis, noting that while 

several studies have demonstrated the value of AI, there remains a 

lack of systematization, with each study appearing to be conducted 

uniquely (Uzsahim et al., 2022). Another paper from December 2022 

emphasized the importance of DL in BC imaging, discussing how 

CNNs have become state-of-the-art tools for digital pathology image 

analysis in BC (Guillén-Rondon et al., 2019). 

 

 

 

 

The availability of public datasets has significantly propelled 

research in this domain. A systematic review was impactful for 

cancer diagnosis in the year 2022 and gave an overview of 

computational and digital pathology in BC and DL. The paper began 

by reviewing public datasets related to BC diagnosis, highlighting 

their critical role in developing and validating ML models (Iqbal et 

al., 2022). New strides in digital pathology technologies have made 

it possible for the utilization of ML and DL paradigms in the 

computational analysis and classification of histopathological 

imagery leading to high potential for improvement of diagnosis 

accuracy (Gurcan et al., 2009). These models' characteristics make it 

possible to define previously overlooked patterns of BC histology, 

which will enhance the rates of early detection. 

Despite the significant advancements and potential benefits of 

integrating DL with digital pathology for BC, several challenges and 

problems still need to be addressed such as variability in pathology 

slides due to differences in tissue preparation, staining protocols, 

and slide scanning processes, obtaining consistent and accurate 

annotations from expert pathologists can be time-consuming and 

expensive, scarcity of labeled data hinders the training of DL models 

that require large amounts of labeled data to achieve high 

performance, DL models are often criticized for their lack of 

interpretability and explainability, pathology slides can contain 

artifacts such as bubbles, folds, and staining inconsistencies, and DL 

models may inadvertently learn and propagate biases present in the 

training data (Amgad et al., 2023; Amgad et al., 2024; Liu et al., 2023; 

McCaffrey et al., 2024; Nigam et al., 2024; Rong et al., 2023; 

Verdicchio et al., 2023) etc. To address these issues, this study 

undertakes a systematic review to examine the which models 

applied in digital pathology for BC, highlight which models are most 

predominant, and analyze where they have been deployed. 

Furthermore, the review underscores the pressing need for greater 

regional collaboration and inclusivity in research efforts, to ensure 

that solutions developed are robust, generalizable, and globally 

applicable. 

 

2.0  Materials and Methods  

The systematic review was conducted using PRISMA steps (Keele 

2007; Khan et al., 2008; Sung et al., 2021). Search terms included: 

BC, DL, ML, digital pathology or combination of BC, ML, DL, and 

digital pathology. Searches were conducted in Google Scholar 

database and only relevant articles were identified. In particular, 

articles were included only if they were carried out on BC as applied 

to ML, DL and digital pathology, articles that demonstrate  
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an experiment and show results, article that is either journal or a 

conference proceeding and article written in English language. 

Exclusion criteria were based on irrelevant articles i.e. articles that 

does not have anything to do with search terms, articles with poor 

study design, articles without experiments i.e. without results and 

finally articles which are either thesis or dissertation were all 

excluded. Some of the information were extracted from the articles: 

title, year, country, articles type, methods, algorithm class, dataset 

source, dataset types, sample size, features, results, strength and 

limitation. 

                          

3.0  Results   

3.1 PRISMA flow chart 

As presented in Figure 1, 558 potentially relevant articles were 

identified using the final search terms. After removing irrelevant 

studies and perusing titles for uniqueness, the number of studies 

was reduced to 377. Of these, 181 were screened by title and   

abstract, and 74 were excluded based on the exclusion criteria. 

Ultimately, 107 articles met the eligibility criteria and were 

considered for this study. 

 

 

3.2 Taxonomy of computational models 

The taxonomy of computational models in BC digital pathology 

therefore illustrates not only the evolution from traditional ML to 

advanced DL methods, but also the rising interest in HL that can 

bridge the gap between interpretability, accuracy, and clinical 

applicability. Out of the 107 articles reviewed, the distribution of BC 

digital pathology models shown that 19 articles focused on ML 

models, 76 articles on DL models, and 12 articles on HL models. A 

breakdown of the methods used in these models is depicted in Table 

1. 

 

3.3 Evaluating BC prediction models  

In BC prediction and diagnosis, ML, DL, and HL approaches have 

been widely explored, especially with the advancement of digital 

pathology. Each paradigm offers unique advantages in analyzing 

clinical and histopathological data, while also presenting notable 

limitations. Understanding their strengths and weaknesses shown 

in Table 2 is crucial for identifying suitable models that can improve 

early detection, diagnosis, and survival prediction in BC patients.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: PRISMA flow chart 

 

Table 1: Taxonomy computational models used for predicting BC based on digital pathology 

Model 

Techniques 

References Number of 

Studies 

Distribution 

(%) 

ML (Aloraidi et al., 2014; Beevi et al., 2016; Chen et al., 2023; Cordeiro et al., 2018; Das et 

al., 2020; Estévez et al., 2002; Filipczuk et al., 2010; Kost et al., 2016; Naik et al., 2022; 

Nguyen et al., 2017; Ortega-Ruiz et al., 2020; Polyakova & Krylov, 2022; Pourakpour & 

19 17.76% 
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Table 2: Strengths and weaknesses of the models (ML, DL, and HL) 

Model Explanation Examples Strengths Weaknesses 

ML It is a subset of AI that 

enables systems to learn 

patterns from data and 

make decisions or 

predictions without being 

explicitly programmed.  

 

Decision Tree (DT), Extra 

Tree (ET), Support Vector 

Machine (SVM), K-Nearest 

Neighbor (KNN), Random 

Forest (RF), Logistic 

Regression (LR), 

Classification and Regression 

Tree (CART) etc. 

Works well with small to 

medium-sized datasets. 

Easier to interpret and explain 

results. 

It has faster training time and 

lower computation cost. 

Limited in handling 

unstructured data. 

Feature engineering is 

required. 

Performance may show 

diminishing return with 

complex data 

DL It is a specialized branch of 

ML that uses ANN with 

multiple layers to 

automatically learn 

hierarchical features from 

raw data input  

Convolutional Neural 

Networks (CNNs), Recurrent 

Neural Networks (RNNs). 

 

Excellent at extracting features 

from complex, high-dimensional 

data. 

Performs well with image and 

text data (e.g., WSI, 

mammograms). 

Can model nonlinear and 

intricate relationships 

Requires large labeled 

datasets. 

Difficult to interpret ("black 

box" models). 

High training time and 

resource-intensive. 

 Risk of overfitting if not 

properly regularized. 

Ghassemian, 2015; Stanitsas et al., 2020; Tashk et al., 2015; Tutac et al., 2009; Veta et 

al., 2016; Yoder et al., 2022) 

DL (Ahmad et al., 2022; Amgad et al., 2019; Balkenhol et al., 2019; Bhavsar et al., 2024; 

Bidart et al., 2018; Boudjelal et al. , 2022; Bozdağ & Talu, 2021; Cai et al., 2019; Cano & 

Cruz-Roa, 2020; Chatterjee & Krishna, 2019; Chen et al., 2016; Dahake & Shinde, 2023; 

Dai et al. 2021; Das et al., 2021; de Bel et al., 2022; Djagba & Mbouobda, 2024; Dong et 

al., 2014; Gella, 2024; Golatkar et al., 2018; Gulye et al., 2024; Guo et al., 2019; Hadush 

et al., 2020; He et al., 2018; Hradel et al., 2020; Huang et al., 2024; Jafarbiglo et al., 2018; 

Jamaluddin et al., 2020; Kasturi et al., 2022; Kate & Shukla, 2021; Kovalev et al., 2016; 

Lakshmanan et al., 2022; Li & Chen, 2021; Liu et al., 2024; Łowicki et al., 2022; McIntire 

et al., 2018; Meng et al., 2019; Mercan et al., 2019; Mercan et al., 2020; Mirjahanmardi 

et al., 2021; Mridha et al., 2021; Munien & Viriri, 2021; Ovtcharov et al., 2018; 

Paramanandam et al., 2016; Pati et al., 2022; Pedraza et al., 2024; Qian, 2022; Qu et al., 

2024; Retamero et al., 2024; Saini & Susan, 2022; Salvi et al., 2019; Sebai et al., 2020; 

Shahidi, 2021; Sheikh et al., 2020; Singh et al., 2024; Sohail et al., 2020; Subramanian et 

al., 2020; Subramanian et al., 2022; Subramanian et al., 2022; Sui et al., 2021; Tang & 

Cai, 2024; Teoh et al., 2024; van Dooijeweert et al., 2024; Vani et al., 2022; Veta et al., 

2015; Vo & Trang, 2022; Wetstein et al., 2019; Wollmann et al., 2018; Xu et al., 2014; 

Żejmo et al., 2017; Zhan et al., 2022; Zhou et al., 2019) 

76 71.03% 

HL 

 

(Kadhim et al., 2023; Karuppasamy et al., 2022; Liang et al., 2019; Malavade et al., 2018; 

Pei et al., 2019; Raj & Nair, 2023; Scognamiglio et al., 2021; Wa et al., 2017; Wolf et al., 

2024; Yang et al., 2023; Zakariapour et al., 2017; Zhu & Lu, 2022) 

12 11.21% 
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HL Combines ML techniques 

with DL models or 

integrates two or more AI 

approaches. 

Often used to balance 

feature learning and 

classification strengths 

 

CNNs +SVM 

CNN+GNN 

 

Improved prediction accuracy 

by leveraging strengths of both 

ML and DL. 

Adaptable to diverse data types. 

Enhances model robustness and 

generalization. 

Can reduce overfitting by 

combining complementary 

models. 

Increased model complexity 

and computational cost. 

Harder to interpret and 

debug. 

Requires expertise in multiple 

techniques. 

Model optimization is time-

consuming. 

 

  

3.4 Analysis of contribution of studies by country 

To understand the geographical distribution of research efforts 

in BC digital pathology, the reviewed articles were analyzed 

based on their country of origin. The contributions reflect the 

global spread of scientific engagement, with some nations 

demonstrating higher research output and leadership in the 

field.  The 107 reviewed articles originated from 28 countries. A 

single paper was contributed by each of the following: Austria, 

Belarus, Brazil, Canada, Colombia, Delhi, Egypt, Germany, Hong 

Kong, Iraq, Japan, Jordan, Korea, Pakistan, Romania, and 

Ukraine. Two (2) papers each came from Italy, Malaysia, Poland, 

Spain, and Switzerland.  Iran, Turkey and the UK contributed 

four (4) papers each, while the Netherlands contributed six (6). 

India and China contributed 13 and 18 papers, respectively, and 

the USA was the largest contributor with 32 papers.  

 

4.0 Discussion 

This systematic review examined the application of ML models 

in predicting BC using digital pathology. The analysis revealed a 

significant research focus in developed countries where digital 

pathology tools are widely adopted. Of the reviewed studies, DL 

emerged as the dominant approach, with 76 studies, followed 

by traditional ML and HL. DL's prevalence can be attributed to 

its ability to effectively handle complex histopathological image 

data, Tradition ML still remains valuable in low resource 

settings where computational power and large dataset may be 

limited. An emerging trend is the use of HL that combine the 

strengths of both ML and DL to balance performance, 

complexity and generalizability. However, a significant gap was 

also observed in the geographical distribution of studies with 

just only one (1) study originating  

from Africa, underscoring the need for more inclusive and 

regionally diverse research. 

 This study adhered to the PRISMA guidelines, ensuring a 

rigorous and standardized review process. The classification of 

ML models based on methodologies provides a clear framework 

for researchers to identify suitable models for specific 

applications. The review highlights the importance of refining 

data augmentation techniques, and exploring hybridized 

methods to enhance model stability and generalizability across 

diverse clinical settings. By addressing these limitations, this 

study offers valuable insights to guide the development of more 

effective ML models for BC prediction using digital pathology. 

 

5.0  Conclusion 

This study’s review of ML, DL, and HL techniques underscores 

their distinct strengths and limitations in BC prediction using 

digital pathology. While DL currently dominates due to its 

effectiveness with large-scale histopathological image datasets, 

the relatively limited adoption of ML and HL indicates 

opportunities for further research, particularly in areas where 

interpretability, integration with clinical data, and model 

generalizability are critical. Importantly, the findings highlight 

the need for greater collaborative research efforts and 

increased contributions from underrepresented regions, 

especially African countries, to ensure that advancements in 

computational pathology are globally inclusive and responsive 

to diverse healthcare contexts. 
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